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Motivating question

What are the local effects of a changing global climate
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Motivation
Why is this an issue? We have global models after all..
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Motivation

Global circulation models (in general):

I spatially coarse

I miss processes characterizing local climate and weather

particularly problematic in complex terrain

⇒ There’s a need to bridge the gap between

global scale model and the local scale

So... how to obtain precipitation fields for local impact studies?

⇒ downscaling
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Model

Intermediate Complexity Atmospheric Research Model (ICAR; Gutmann et al., 2016)

general features
. quantities stored on 3D grid
. microphysics
. wind field based on linear theory
. numerical advection within wind field

physics based

wind field
. calculated analytically

}
computationally efficient!

(instead of numerically)
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Model
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ICAR - Windfield

U
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ICAR - Windfield

U from coarse scale forcing

in our case: ERA-Interim reanalysis
(Dee et al., 2011)
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ICAR - Windfield

U

from high resolution DEM
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ICAR - Windfield

downdrafts
updraftsU

equations: Barstad and Grøn̊as (2006)
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Model

I mainly orographic precipitation

I some synoptic precipitation

I NO convective precipitation

solution to include convective precipitation:
add ERA-Interim convective precipitation
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Model

So... does the model work?

yes, you can produce downscaled atmospheric fields:

publication domain grid spacing
Gutmann et al. (2016) Colorado Rockies, USA ∆x = 4 km
Engelhardt et al. (2017) Western Himalaya, India ∆x = 5 km
Bernhardt et al. (2018) Zugspitze, Germany ∆x = 1 km

BUT

I are these fields useful for local impact studies?

e.g. can ICAR simulate the precipitation measured at an alpine weather station?
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Methods / Study Domain

South Island of New Zealand
evaluated for

I 11 year period (2007-2017)

I 11 alpine weather stations
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(Horak et al., 2018)

Why here?

I orographic precipitation regime

I predominant wind direction

I surrounded by ocean

Research question:

I improvement over global model?

11/25



Methods

Better than some other reference model?
⇒ quantifiable with skill scores

e.g. based on the MSE

SSMSE = 1− MSEICAR

MSEreference

0 1

worse better

perfectno
improvement
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Methods

physical factors affecting model performance

I topographic complexity
I alpine topography
I coastal topography

I season

I large scale weather patterns

I atmospheric background state

BUT: Preliminary studies revealed:

the model top setting is crucial

had not been investigated before!
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Results
Example - Effect of the model top on cloud water distribution
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Results
Choosing the optimal model top:

mean RMSE of ICAR at alpine weather stations
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Results
ICAR performs better than ERA-Interim! (mostly)

model top = 4.0 km
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Results
Ivory, z = 1390 m MSL, 2 km upwind of alpine crest
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Gridded Datasets

mean daily precipitation (2007–2017)

observation based gridded product ICAR
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Results
influence of synoptic weather patterns (contours show geopotential height at 1000 hPa)
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Results

influence of flow properties

idea: linear theory valid for linear flows - does ICAR work better for those?

yes!

I linear flow ⇒ highest scores

I flow of lower linearity ⇒ lower scores
e.g. turbulences, flow splitting, orographic blocking, wave breaking, ...

I unstable atmospheric conditions ⇒ lower scores
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Results
core hours required for the simulation of one year
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Results
core hours required for the simulation of one year
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Results
core hours required for the simulation of one year
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Conclusions

I local precipitation well reproduced at 8 alpine sites

I model underestimates precipitation! ⇒ correction necessary

I precipitation patterns well captured at windward slopes of alpine range

I less so farther to the lee

I cross alpine flow leads to better performance than parallel flow

I model top choice critical!

I efficiency: ≈ 225 times faster than WRF (Gutmann et al., 2016)
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Outlook

Lots of open questions...

I why is the model top so influencial?

I why less accuracy with more z-levels?

I why do we underestimate so much?

I what about other domains?
I Peruvian Andes
I European Alps

we expect difficulties due to
I less orographic influence
I higher orographic complexity
I synoptic situation more complex
I ...
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Thank you!
more details:

Horak, J., Hofer, M., Maussion, F., Gutmann, E., Gohm, A., and Rotach, M. W.:

Assessing the Added Value of the Intermediate Complexity Atmospheric Research

Model (ICAR) for Precipitation in Complex Topography, Hydrol. Earth Syst. Sci.

Discuss., https://doi.org/10.5194/hess-2018-612, in review, 2018.
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Wasser- und Abfallwirtschaft.

Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae,
U., Balmaseda, M., Balsamo, G., Bauer, P., et al. (2011). The era-interim
reanalysis: Configuration and performance of the data assimilation system.
Quarterly Journal of the royal meteorological society, 137(656):553–597.

Engelhardt, M., Leclercq, P., Eidhammer, T., Kumar, P., Landgren, O., and
Rasmussen, R. (2017). Meltwater runoff in a changing climate (1951–2099) at
Chhota Shigri Glacier, Western Himalaya, Northern India. Annals of
Glaciology, pages 1–12.

24/25



Literature II

Gutmann, E., Barstad, I., Clark, M., Arnold, J., and Rasmussen, R. (2016). The
Intermediate Complexity Atmospheric Research Model (ICAR). Journal of
Hydrometeorology, 17(3):957–973.

Horak, J., Hofer, M., Maussion, F., Gutmann, E., Gohm, A., and Rotach, M. W.
(2018). Assessing the Added Value of the Intermediate Complexity
Atmospheric Research Model (ICAR) for Precipitation in Complex Topography.
Hydrology and Earth System Sciences Discussions, 2018:1–36.

Sarker, R. (1966). A dynamical model of orographic rainfall. Monthly Weather
Review, 94(9):555–572.

Smith, R. B. and Barstad, I. (2004). A linear theory of orographic precipitation.
Journal of the Atmospheric Sciences, 61(12):1377–1391.

25/25


	References

