Downscaling the Local Weather Above Glaciers in Complex Topography

Johannes Horak ¹, Marlis Hofer ¹, Ethan Gutmann ², Alexander Gohm ¹ and Mathias W. Rotach ¹

¹Institute of Atmospheric and Cryospheric Sciences (ACINN) University of Innsbruck, Austria

²National Center for Atmospheric Research (NCAR) Boulder, Colorado, USA

27.04.2017

Image Credit: Alpenverein Österreich

Image Credit: Alpenverein Österreich

How do glaciers behave in a changing climate?

How do glaciers behave in a changing climate?

Glaciers

process-based glacier mass-balance models

How do glaciers behave in a changing climate?

Glaciers

process-based glacier mass-balance models

How do glaciers behave in a changing climate?

Glaciers

process-based glacier mass-balance models

Atmospheric input

How do glaciers behave in a changing climate?

Glaciers

process-based glacier mass-balance models

Atmospheric input

- high quality
- physically consistent
- ► at local scale

Intermediate Complexity Atmospheric Research model

Gutmann, Ethan, et al. "The intermediate complexity atmospheric research model (ICAR)." Journal of Hydrometeorology 17.3 (2016): 957-973.

ICAR

Atmospheric model

- allows physics based downscaling
- quantities stored in 3D grid
- advected within windfield

ICAR

Atmospheric model

- allows physics based downscaling
- quantities stored in 3D grid
- advected within windfield

Windfield

- calculated analytically
- based in linear theory
- calculated for every forcing time step
 - \Rightarrow Sequence of steady states

ERA-Interim forcing

 $\Delta t = 6 h \quad \Delta A \approx 60 \times 60 \text{ km}^2$

- $\blacktriangleright \Delta t = 1 \, h \quad \Delta A \approx 4 \times 4 \, \mathrm{km}^2$
- \blacktriangleright model top at pprox 5.7 km

ERA-Interim forcing

 $\Delta t = 6 h \quad \Delta A \approx 60 \times 60 \text{ km}^2$

- $\blacktriangleright \Delta t = 1 \, h \quad \Delta A \approx 4 \times 4 \, \mathrm{km}^2$
- \blacktriangleright model top at pprox 5.7 km

ERA-Interim forcing

 $\Delta t = 6 h \quad \Delta A \approx 60 \times 60 \text{ km}^2$

- $\blacktriangleright \Delta t = 1 \, h \quad \Delta A \approx 4 \times 4 \, \mathrm{km}^2$
- \blacktriangleright model top at pprox 5.7 km

ERA-Interim forcing

 $\Delta t = 6 h \quad \Delta A \approx 60 \times 60 \text{ km}^2$

- $\blacktriangleright \Delta t = 1 \, h \quad \Delta A \approx 4 \times 4 \, \mathrm{km}^2$
- \blacktriangleright model top at pprox 5.7 km

Evaluation

2010-2015

skill scores

- 24h accumulated precipitation
- > 24h mean of T, q_v and ws
- added value wrt. nearest gridpoint ERAI

Evaluation

2010-2015

skill scores

- 24h accumulated precipitation
- > 24h mean of T, q_v and ws
- added value wrt. nearest gridpoint ERAI

Also look at

- precipitation measurements from GPM mission
- compare to annual precipitation climatology

ICAR skill score with respect to ERAI

Quantity	ICAR Skill Score wrt.	
	ERAI at surface	ERAI at pressure level
precipitation	0.43	
10 m wind speed	0.34	
specific humidity	0.72	-1.22
temperature	0.82	-2.15

$$SS = 1 - rac{\mathsf{mse}_{\mathsf{icar}}}{\mathsf{mse}_{\mathsf{erai}}}$$

ICAR skill score with respect to ERAI

Quantity	ICAR Skill Score wrt.		
	ERAI at surface	ERAI at pressure level	
precipitation	0.43		
10 m wind speed	0.34		
specific humidity	0.72	-1.22	
temperature	0.82	-2.15	
CC 1 Mseicar			

$$SS = 1 - rac{\mathsf{mse}_{\mathsf{icar}}}{\mathsf{mse}_{\mathsf{erai}}}$$

ICAR skill score with respect to ERAI

ICAR Skill Score wrt.	
ERAI at surface	ERAI at pressure level
0.43	
0.34	
0.72	-1.22
0.82	-2.15
	ICAR SI ERAI at surface 0.43 0.34 0.72 0.82

$$SS = 1 - rac{\mathsf{mse}_{\mathsf{icar}}}{\mathsf{mse}_{\mathsf{erai}}}$$

pronounced topographic effect

precipitation

acc.

>

pronounced topographic effect

- moist windward slopes
- dry leeside valleys

pronounced topographic effect

- moist windward slopes
- dry leeside valleys

Precipitation

general observations:

- AWS measurements underestimated
- ICAR results closest rmse_{ICAR} = 40 mm
 - $rmse_{GPM} = 45 mm$
 - $\mathsf{rmse}_{\mathsf{ERAI}} = 53\,\mathsf{mm}$
- ICAR correlation to measurements $\rho = 0.80$
- ICAR hit rate comparable to GPM superior at higher prec. thresholds

Investigated ICAR at site in Alps of New Zealand

Investigated ICAR at site in Alps of New Zealand

Added value for

- ► pr and ws
- q_v and T when compared to ERAI at surface

Investigated ICAR at site in Alps of New Zealand

Added value for

- ▶ *pr* and ws
- q_v and T when compared to ERAI at surface

High correlation and hit-rate comparable to GPM

Investigated ICAR at site in Alps of New Zealand

Added value for

- ▶ *pr* and ws
- q_v and T when compared to ERAI at surface

High correlation and hit-rate comparable to GPM

Wider scope

- precipitation patterns reflect influence of complex topography
- indications for physicality of results

Investigated ICAR at site in Alps of New Zealand

Added value for

- ▶ pr and ws
- q_v and T when compared to ERAI at surface

High correlation and hit-rate comparable to GPM

Wider scope

- precipitation patterns reflect influence of complex topography
- indications for physicality of results

of course - further investigations necessary

Outlook

- more stations for southern New Zealand
- \blacktriangleright increase resolution to $1\times 1\,{\rm km}^2$
- turn on other physics packages

If you have a weatherstation near a glacier - please contact us!

- http://acinn.uibk.ac.at DoG project
- ► johannes.horak@uibk.ac.at
- ▶ or at ResearchGate.net

Thank you!