Weather pattern-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR)

Johannes Horak ¹, Marlis Hofer ¹, Fabien Maussion ¹, Ethan Gutmann ², Alexander Gohm ¹ and Mathias W. Rotach ¹

¹Department of Atmospheric and Cryospheric Sciences Universität Innsbruck. Austria

> ²National Center for Atmospheric Research Boulder, Colorado, USA

12.04.2018

Motivation

Local effects of a changing global climate

Motivation

Reliability of the method

local variability of precipition

well represented by the method?

Model

Intermediate Complexity Atmospheric Research Model (ICAR) (Gutmann et al., 2016)

- quantities stored on 3D grid
- advected within wind field
- microphysics
- physics based downscaling
- computationally frugal

Wind field

- calculated analytically
- ▶ based in linear theory
- calculated for every forcing time step
 - \Rightarrow Sequence of steady states

Study Region

New Zealand

Domain - South Island of New Zealand

precipitation data provided by

NIWA, NZ MetService, NZ University of Otago, NZ

Setup

ERA-Interim forcing

ho $\Delta t = 6 \, \text{h}$ $\Delta A \approx 60 \times 83 \, \text{km}^2$ also used as to determine added value

downscale to

- $ightharpoonup \Delta t = 1 \, h \quad \Delta A \approx 4 \times 4 \, \text{km}^2$
- ightharpoonup model top at pprox 5.7 km above topography

10 year study period

▶ 01/2006 to 12/2016

Settings

- ► ICAR standard settings
- NO tuning to observations

Weather Patterns

- ▶ 12 synoptic weather patterns (Kidson, 2000)
- daily classification since 1948 by NIWA, NZ
- defined by 24h mean elevation of 1000 hPa lvl
 - example: Trough pattern
 - \blacktriangleright on $\approx 12\%$ of days
- ▶ linked to regional moistening / drying

Trough - pattern

Weather Patterns

Weather Patterns

Weather patterns - ideal for investigating ICAR

- not part of downscaling method
- indicator of physicality

Weather Pattern ⇒ local moistening and drying

can ICAR model the measured variability?

Calculate for every station

Coefficients of Determination

Caveats

ICAR underestimates precipitation

- ► ERA-Interim too dry?
- strong influence of model top
 - ⇒ further studies needed
- workaround: correction factor per site

Convection parametrizations not tested (yet)

Summary

Investigated variability of local precipitation due to synoptic weather patterns

- added value of ICAR compared to ERA-Interim
- local variability well explained by ICAR
- local variability linked to synoptic situation
- relevant processes well approximated
- ⇒ ICAR suited to investigate the local effects of a future climate

Outlook

- extend analysis to gridded precipitation data (e.g. GPM)
- variability of local temperature
- ▶ does ERA5 explain variability better?

More details in paper later this year

- skill scores (MSE and HSS based)
- performance indicators for ICAR

Updates / Contact:

- johannes.horak@uibk.ac.at
- ▶ or on ResearchGate.net

Thank you!

Literature I

- Barstad, I. and Grønås, S. (2006). Dynamical structures for southwesterly airflow over southern norway: the role of dissipation. *Tellus A*, 58(1):2–18.
- Gutmann, E., Barstad, I., Clark, M., Arnold, J., and Rasmussen, R. (2016). The intermediate complexity atmospheric research model (icar). *Journal of Hydrometeorology*, 17(3):957–973.
- Kidson, J. W. (2000). An analysis of new zealand synoptic types and their use in defining weather regimes. *International journal of climatology*, 20(3):299–316.

The End

Appendix

Supplemental data and plots

Precipitation Variability w. Standard Deviation at Ivory

Correlation for permuted weather pattern data

