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Introduction

How to obtain atmospheric fields for local impact studies?

1. dynamic downscaling
» physically consistent fields
» computationally expensive
> if tuned to observations: stationarity assumption
2. statistical downscaling
» computationally cheap
» require measurements for training
= data sparse regions?
= stationarity assumption
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Introduction

Intermediate Complexity Atmospheric Research Model (ICAR)
(Gutmann et al., 2016)

» physics based
» computationally frugal

compared to other intermediate complexity approaches:
» fewer simplifying assumptions

» more general atmospheric model
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ICAR

» quantities stored on 3D grid
» numerical advection within wind field

» microphysics
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ICAR

» quantities stored on 3D grid
» numerical advection within wind field
» microphysics
Wind field
» calculated analytically
» based in linear theory

» calculated for every forcing time step
= Sequence of steady states
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|ICAR - Windfield

- U —>  from coarse scale forcing
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|ICAR - Windfield

from high resolution DEM
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|ICAR - Windfield

>0

equations: Barstad and Grgnas (2006)
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|ICAR - Windfield

currently: no reflection of waves

equations: Barstad and Grgnds (2006)
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Goal

use ICAR to downscale
» 24h accumulated precipitation and
» quantify added value over forcing dataset

and investigate

» direct comparison to weather station data over multiple
years

» performance in dependence of atm. background state
» performance in dependence of synoptic weather patterns
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Study Domain



Domain - South Island of New Zealand

alpine stations

A

O  coastal stations
I topography above 1000 m
[ 1 model domain
—» north-westerlies predominant

highest peak: ~ 3700m

precipitation data:

NIWA, NZ
MetService, NZ
University of Otago, NZ
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13/55



© ~ © In <+ m N = O @0
(w) uoneyddaid jenuue uesw

Mean Annual Precipitation

14/55



Observational Data
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Setup

ERA-Interim forcing
> At=6h AA=60x 83km?
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Setup

ERA-Interim forcing
> At=6h AA=60x 83km?

also used as reference model to
determine added value
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Setup

ERA-Interim forcing
> At=6h AA=60x 83km?

downscale to
» At=1h AA=4x4km?
» model top at ~ 5.7 km above topography

10 year study period
» 01/2006 to 12/2016

Settings
» ICAR standard settings
» NO tuning to observations
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Short intermission:

A small mistake with large
consequences

two weeks ago...



Mistakes
> very advanced paper draft
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Mistakes

» found error in self written post-processing tool
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Mistakes

» found error in self written post-processing tool
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Mistakes

What happened?

ERAI latitude array sorted from highest value to lowest value:
» [-39,—39.75,—-40.5, —41.25, —42, .. ]

equation to find nearest grid point assumed otherwise

P> correct index calculated

» started counting from wrong side of array

-39 -405 -42 -435 -45 -46.5 -48 -495
-39 -405 -42 -435 -45 -465 -48 -495

= extracted time series from wrong grid point
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Consequences

Paper and Evaluation need adaptions

» analysis still relevant

» some results change

= interpretation now obsolete

updated results shown here
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What we can compare

24h accumulated precipitation

ICAR  :ICAR
ICAR"  :ICAR + ERAI
ICAR*  :ICAR+ (ERAI — ORO)

reference : ERAI

ORO: orographic precipitation already in ERAI
» from ICAR simulations with ERAI topography
» and ERAI wind field (no linear waves)

all interpolated to station coordinates

for now we focus on ICAR™ (more work on ICAR* needed)
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Evaluation Strategy

determine added value
» Skill scores
» mean squared error based

> Heidke skill score
influence of selected criteria on scores
» topographic complexity
» flow linearity
» synoptic situation

significance tests
» moving block bootstrap

24/55



Evaluation Strategy

use skill scores to quantify added value over ERAI

» MSE based
Model closer to measurements than a reference model?

» Heidke skill score
Model better at forecasting occurrence / non-occurrence
of an event than reference is?

dependent on threshold!

> 25 mm
> 50 mm
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Evaluation Strategy

What is HSS?

» contingency table based
> event occurs or doesn't

Essentially:

prop. correct - reference

1.0 - reference

reference:

prop. correct ERA-Interim

Modelled

Observed
yes no
0 . false
| hits .
> hits
2 fglse misses
misses

26/55



Evaluation Strategy

MSE
SSuse = 1_MSE,

SSuss = 717—77r
where
n ... proportion correct ICAR™
Nref ... proportion correct ERAI
score values:
1.0 ... perfect!
0.0 ... as good as reference

< 0.0 ... worse than reference
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Significance Tests

moving block bootstrap
» same algorithm as normal bootstrapping
> preserves autocorrelation structure of time series
» resamples blocks consisting of L observations
» block length L = L(n, p)

Score significant if
» b5th percentile of bootstrapped scores > 0

All following plots:
only significant scores included
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Significance Tests
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Results



Mean annual precipitation sums
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Time Series

—— measured ICAR* ERAI
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Scores

[ SSwse 1 SShss(25mm) [ SSHss(50mm)
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ICAR and linearity of flow upstream

ICAR based on linear theory
= linear flow should increase model performance

1. defined upstream test volumes (per weather station)

2. characterized flow linearity in test volumes with Froude
number
WS

~ HN
3. investigated how this affects skill scores

Fr

35/55



ICAR and linearity of flow

upstream
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ICAR and linearity of flow upstream

Characterized with Froude Number

WS

Fr = ON (1)

Fr <1 non-linearity more likely
Fr > 1 linear flow
» WS... wind speed perpendicular to alps
» H ... characteristic height
» N ... Brunt Vaisala frequency
Only included days where
» flow +15° northwest or southeast

P stable stratification
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ICAR and linearity of flow upstream

ICAR™* vs ERA-Interim
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ICAR and linearity of flow upstream

ICAR vs ERA-Interim
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Fr<l Fr=1
| — SSMSE ] SSHss(ZSmm) =3 SSHss(SOmm)

39/55



Weather Patterns

» 12 synoptic weather patterns (Kidson, 2000)
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Weather Patterns

» 12 synoptic weather patterns (Kidson, 2000)

» daily classification since 1948 by NIWA, NZ

» defined by 24h mean elevation of 1000 hPa Ivl
> example: Trough - pattern _
» on ~ 12% of days 1000 hPa isohypses

Trough - pattern
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Weather Patterns
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Weather Patterns

» 12 synoptic weather patterns (Kidson, 2000)
» daily classification since 1948 by NIWA, NZ
» linked to regional moistening / drying
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Weath

er Patterns

» 12 synoptic weather patterns (Kidson, 2000)
» daily classification since 1948 by NIWA, NZ
» linked to regional moistening / drying
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Weather Patterns

» 12 synoptic weather patterns (Kidson, 2000)
» daily classification since 1948 by NIWA, NZ
» linked to regional moistening / drying
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Weather Patterns

» 12 synoptic weather patterns (Kidson, 2000)
» daily classification since 1948 by NIWA, NZ
» linked to regional moistening / drying

pattern - mean (mm/day)
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Weather Patterns

» 12 synoptic weather patterns (Kidson, 2000)
» daily classification since 1948 by NIWA, NZ
» linked to regional moistening / drying

mean (mm/day) pattern - mean (mm/day)
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Weather Patterns

Weather patterns - ideal for investigating ICAR
» not part of downscaling method

» indicator of how physics based model is
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Weather Patterns

Weather patterns - ideal for investigating ICAR
» not part of downscaling method

» indicator of how physics based model is

Weather Pattern = local moistening and drying

can ICAR model the measured variation?
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Precipitation Variation at an Alpine Station
Philistine (z=1655 m)
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Coefficient of Determination
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Precipitation Variation at an Alpine Station

» only small differences
» ICAR™ very similar to ERAI

» ICAR™: r2 > 0.9 at 10 of 15 sites

= variability explained equally well by forcing

However, at alpine stations:

local P,y precipitation during pattern
more accurate in ICAR™
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SSyse during weather patterns

Before:
» looked at average precipitation at a weather station
during a pattern
» calculated SSyse for average precipitations per weather
pattern at a weather station
Now:
» calculate SSyse for all days where weather pattern occurs
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SSyse during weather patterns
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Summary and Conclusions



Conclusions

Added value of ICAR™ over ERAI in complex topography
» SSwmse - added value at some 7/10 alpine stations

» SSpss - added value for 6 alpine stations at every
threshold

no added value for coastal weather stations

best 'choice’ for complex topography:
» ICART = ICAR + ERAI

but: ICAR is too dry
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|CAR is too dry

Potential reasons

1.

A

no coupling w. surface

ERAI too dry?

cloud ice water and cloud liquid water
seeder /feeder mechanism

nonlinear wave amplification

model top height

50/55



Influence of Model Top
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Conclusions

Upstream flow linearity
» slightly improves ICAR™ performance

» however, effect clearer in ICAR only
ERAI affected as well
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Conclusions

Variation of local precipitation
» variability similar to that of forcing (r?)

However, clear added value found for local Pasy(wp)
» at 9 of 10 alpine stations
SSuse > 0.4

SSuse in dependence of weather pattern:
» clear added value for 8/12 weather patterns
» 3/12 with no added value (median)
» 1/12 with worse performance compared to ERAI
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Conclusions

ICAR shows potential
» added value without observational tuning
» particularly relevant for data sparse regions
» despite low model top

...but has its problems

Clarification needed for

» orographic component of ERAI
work in progress

» underestimation of precipitation

» physics based argument for choice of model top
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Thank you!

55555



Literature |

Barstad, I. and Grgnas, S. (2006). Dynamical structures for
southwesterly airflow over southern norway: the role of
dissipation. Tellus A, 58(1):2-18.

Gutmann, E., Barstad, I., Clark, M., Arnold, J., and
Rasmussen, R. (2016). The intermediate complexity

atmospheric research model (icar). Journal of
Hydrometeorology, 17(3):957-973.

Kidson, J. W. (2000). An analysis of new zealand synoptic
types and their use in defining weather regimes.
International journal of climatology, 20(3):299-316.

Sarker, R. (1966). A dynamical model of orographic rainfall.
Monthly Weather Review, 94(9):555-572.

Smith, R. B. and Barstad, |. (2004). A linear theory of
orographic precipitation. Journal of the Atmospheric
Sciences, 61(12):1377-1391.

55/55



Appendix



Scores

[ icar [ icar* [ icar+

score

SSwmse SShss(25mm) SShss(50mm)
skill measure
icar* = icar + erai - oro
icar™ = icar + erai
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