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Introduction

Intermediate Complexity Atmospheric Research Model (ICAR)
(Gutmann et al., 2016)

I physics based

I computationally frugal

compared to other intermediate complexity approaches:

I fewer simplifying assumptions

I more general atmospheric model
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ICAR

I quantities stored on 3D grid

I numerical advection within wind field

I microphysics

Wind field

I calculated analytically

I based in linear theory

I calculated for every forcing time step
⇒ Sequence of steady states
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ICAR - Windfield

downdrafts
updraftsU

currently: no reflection of waves

equations: Barstad and Grøn̊as (2006)
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Goal

use ICAR to downscale

I 24h accumulated precipitation and

I quantify added value over forcing dataset

and investigate

I direct comparison to weather station data over multiple
years

I performance in dependence of atm. background state

I performance in dependence of synoptic weather patterns
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Study Domain
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Domain - South Island of New Zealand

48°S

46°S

44°S

42°S

40°S

164°E 166°E 168°E 170°E 172°E 174°E 176°E

alpine stations
coastal stations
topography above 1000 m
model domain
north-westerlies predominant

highest peak: ≈ 3700m

precipitation data:

NIWA, NZ
MetService, NZ
University of Otago, NZ
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Mean Annual Precipitation
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Observational Data
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Setup

ERA-Interim forcing

I ∆t = 6 h ∆A ≈ 60× 83 km2

also used as reference model to
determine added value

downscale to

I ∆t = 1 h ∆A = 4× 4 km2

I model top at ≈ 5.7 km above topography

10 year study period

I 01/2006 to 12/2016

Settings

I ICAR standard settings

I NO tuning to observations
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Short intermission:

A small mistake with large
consequences
two weeks ago...
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Mistakes
I very advanced paper draft
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Mistakes
I found error in self written post-processing tool
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Mistakes

What happened?

ERAI latitude array sorted from highest value to lowest value:

I [−39,−39.75,−40.5,−41.25,−42, ...]

equation to find nearest grid point assumed otherwise

I correct index calculated

I started counting from wrong side of array

-39 -40.5 -42 -43.5 -45 -46.5 -48 -49.5
-39 -40.5 -42 -43.5 -45 -46.5 -48 -49.5

⇒ extracted time series from wrong grid point
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Consequences

Paper and Evaluation need adaptions

I analysis still relevant

I some results change

⇒ interpretation now obsolete

updated results shown here
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Evaluation Strategy
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What we can compare

24h accumulated precipitation

ICAR : ICAR

ICAR+ : ICAR + ERAI

ICAR∗ : ICAR +
(
ERAI− ORO

)
reference : ERAI

ORO: orographic precipitation already in ERAI

I from ICAR simulations with ERAI topography

I and ERAI wind field (no linear waves)

all interpolated to station coordinates

for now we focus on ICAR+ (more work on ICAR∗ needed)
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Evaluation Strategy

determine added value

I Skill scores
I mean squared error based
I Heidke skill score

influence of selected criteria on scores

I topographic complexity

I flow linearity

I synoptic situation

significance tests

I moving block bootstrap
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Evaluation Strategy

use skill scores to quantify added value over ERAI

I MSE based
Model closer to measurements than a reference model?

I Heidke skill score
Model better at forecasting occurrence / non-occurrence
of an event than reference is?

dependent on threshold!
I 25 mm
I 50 mm
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Evaluation Strategy

What is HSS?

I contingency table based

I event occurs or doesn’t

Essentially:

prop. correct - reference

1.0 - reference

reference:

prop. correct ERA-Interim

hits

missesfalse
misses

false
hits

Observed
yes no

M
o
d
e
ll
e
d y
e
s

n
o
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Evaluation Strategy

SSMSE = 1− MSE

MSEr

SSHSS =
η − ηr
1− ηr

where
η ... proportion correct ICAR+

ηref ... proportion correct ERAI

score values:

1.0 ... perfect!
0.0 ... as good as reference
< 0.0 ... worse than reference
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Significance Tests

moving block bootstrap

I same algorithm as normal bootstrapping

I preserves autocorrelation structure of time series

I resamples blocks consisting of L observations

I block length L = L(n, ρ)

Score significant if

I 5th percentile of bootstrapped scores > 0

All following plots:
only significant scores included

28/55



Significance Tests
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Results
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Mean annual precipitation sums
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Time Series
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Scores
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Mean Squared Error
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ICAR and linearity of flow upstream

ICAR based on linear theory
⇒ linear flow should increase model performance

1. defined upstream test volumes (per weather station)

2. characterized flow linearity in test volumes with Froude
number

Fr =
WS

HN

3. investigated how this affects skill scores
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ICAR and linearity of flow upstream
alpine AWS
erai gridpoint

test region
h(x,y) 
1000 m

40°S

42°S

44°S

166°E 170°E 174°E
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ICAR and linearity of flow upstream

Characterized with Froude Number

Fr =
WS

H N
(1)

Fr < 1 non-linearity more likely
Fr ≥ 1 linear flow

I WS... wind speed perpendicular to alps

I H ... characteristic height

I N ... Brunt Väisälä frequency

Only included days where

I flow ±15o northwest or southeast

I stable stratification
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ICAR and linearity of flow upstream
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ICAR and linearity of flow upstream
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Weather Patterns

I 12 synoptic weather patterns (Kidson, 2000)

I daily classification since 1948 by NIWA, NZ

I linked to regional moistening / drying
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Weather Patterns
I 12 synoptic weather patterns (Kidson, 2000)
I daily classification since 1948 by NIWA, NZ
I defined by 24h mean elevation of 1000 hPa lvl

I example: Trough - pattern
I on ≈ 12% of days

I linked to regional moistening / drying
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Weather Patterns

Weather patterns - ideal for investigating ICAR

I not part of downscaling method

I indicator of how physics based model is

Weather Pattern ⇒ local moistening and drying

can ICAR model the measured variation?
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Precipitation Variation at an Alpine Station
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Coefficient of Determination
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Precipitation Variation at an Alpine Station

I only small differences

I ICAR+ very similar to ERAI

I ICAR+: r 2 > 0.9 at 10 of 15 sites

⇒ variability explained equally well by forcing

However, at alpine stations:

local P̄24h precipitation during pattern
more accurate in ICAR+
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SSMSE during weather patterns

Before:

I looked at average precipitation at a weather station
during a pattern

I calculated SSMSE for average precipitations per weather
pattern at a weather station

Now:

I calculate SSMSE for all days where weather pattern occurs
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SSMSE during weather patterns
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Summary and Conclusions
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Conclusions

Added value of ICAR+ over ERAI in complex topography

I SSMSE - added value at some 7/10 alpine stations

I SSHSS - added value for 6 alpine stations at every
threshold

no added value for coastal weather stations

best ’choice’ for complex topography:

I ICAR+ = ICAR + ERAI

but: ICAR is too dry
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ICAR is too dry

Potential reasons

1. no coupling w. surface

2. ERAI too dry?

3. cloud ice water and cloud liquid water

4. seeder/feeder mechanism

5. nonlinear wave amplification

6. model top height
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Influence of Model Top
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Conclusions

Upstream flow linearity

I slightly improves ICAR+ performance

I however, effect clearer in ICAR only
ERAI affected as well
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Conclusions

Variation of local precipitation

I variability similar to that of forcing (r 2)

However, clear added value found for local P̄24h(wp)

I at 9 of 10 alpine stations

SSMSE ≥ 0.4

SSMSE in dependence of weather pattern:

I clear added value for 8/12 weather patterns

I 3/12 with no added value (median)

I 1/12 with worse performance compared to ERAI

53/55



Conclusions

ICAR shows potential

I added value without observational tuning

I particularly relevant for data sparse regions

I despite low model top

...but has its problems

Clarification needed for

I orographic component of ERAI
work in progress

I underestimation of precipitation

I physics based argument for choice of model top
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Thank you!
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Scores
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