An evaluation of linear theory based downscaling with ICAR in complex topography

Johannes **Horak**, Marlis Hofer, Fabien Maussion, Ethan Gutmann, Alexander Gohm and Mathias W. Rotach

- Intermediate
- Complexity
- **A**tmospheric
- \mathbf{R} esearch

Model

- Intermediate
- Complexity
- **A**tmospheric
- Research

"Intermediate Complexity Downscaling"

Model

Physics based

• 3D model

physics

- simplified wind-field
- linear mountain-wave theory
- advects atmospheric quantities
- e.g. moisture and heat
- employs microphysics
 - e.g. Thompson MP

Physics based

• 3D model

physics

- simplified wind-field
- linear mountain-wave theory
- advects atmospheric quantities
- e.g. moisture and heat
- employs microphysics
 - e.g. Thompson MP

Computationally cheap

• ≈1/100th of core hours compared to WRF

An Evaluation of ICAR

- South Island of New Zealand ₄₇₅
 - Alpine Range (Southern Alps)
 data from 11 weather stations
 - "simple" synoptic situation

- Added value over the forcing Dataset?
 - Yes BUT... (more later)

ICAR precipitation patterns

total daily mean precipitation

Does it work?

Yes but...

- still to be considered as in development
- more evaluation/understanding needed!
- apply with care!
- avoid pitfalls (see poster)

So what's going on here?

• Numerical artifacts at top boundary

• Solutions, references and more details shown at the poster!

Thank you!